Sunday, November 24, 2019

More Unintended Consequences:

The Complexities of Transportation

I recently came across several articles related to transportation--well, very loosely related, in one case--that once again show why it is so difficult to predict the consequences of new technologies on energy use.

Much of the problem has to do with human behavior.  We often assume that a new technology will take cars off the road, and therefore reduce pollution and congestion.  Wrong!  Some recent articles on autonomous cars and on e-scooters suggest that we are finding otherwise.  Rather than replacing cars, autonomous cars may be taking people out of public transportation, and e-scooters may be attractive mainly to people who would otherwise walk.

One study on autonomous cars was particularly interesting.  The article reports on a survey of commuters done by the University of Adelaide questioning them on vehicle ownership and use, vehicle sharing, etc.  While the people doing the study saw a significant potential for driverless vehicles to reduce traffic congestion in the long term, they discovered that commuter attitudes, the price of new technology, and other factors may make the transition a slow one.  In fact, they initially foresee an adverse impact on public transport, and a likely increase in traffic congestion over the next few decades.

And I note that this article didn't even address another congestion factor that I saw discussed elsewhere.  In cities where parking is difficult to find and expensive, there may be a tendency to let driverless cars just wander around the streets between uses, which would greatly increase traffic congestion.

Another study focused on e-scooters in Paris.  The biggest surprise to me was the statement that the scooters don't replace cars, they "motorize walking trips."  In addition to that, the article noted a slew of of other ecological downsides.  Although they are billed as carbon-free, they still require energy and materials to build, generating carbon in the process, and they have a short life span (due to both wear-and-tear and to vandalism), so must be replaced frequently.  They are being rented out and left in different places, so they have to be gathered up every day and brought to an area for recharging.  A lot are ending up in the river and must be retrieved.

While both of these reports are from outside the US, the findings appear relevant.  Certainly, Americans are known for their love affair with their automobiles, so I suspect that a survey on autonomous cars in the US would have similar results to the one in Australia.  And the article on e-scooters in Paris also quoted a study in the US that showed that most e-scooters are replacing walking or biking, not automobiles.  In fact, the US study showed that the electricity for charging was only a small percentage of the e-scooter's environmental impact--most of the emissions were from the materials and manufacturing, and from driving around to pick the scooters up.

Obviously, both these studies could--and should--lead to efforts to address at least some of the issues raised.  For example, financial incentives might be possible to counter concerns about the price of autonomous vehicles, and electric vans could be used to pick up e-scooters.  But the articles do highlight the fact that introducing new technologies is not enough to achieve the expected--and desired--outcomes.  Factors such as those identified in the articles need to be raised and addressed.  And even with that, human nature and other factors suggest that we may have to temper our expectations about how much some of the new technologies will reduce pollution, carbon use, congestion, etc. 

The final article I saw recently initially looked to me like it was going to tell a different story.  It addressed the energy uses of streaming videos.  I naturally thought about all the car trips on-demand access is potentially saving compared to the "good old days" when we had to pick up DVDs at Blockbuster.  Therefore, I was surprised at their conclusion that Netflix and its competitors are not as good for the environment as I would have guessed!  What the article made clear was that sitting in our living rooms, we don't see that energy is required for the streaming services.  And the higher the definition of our TV screens, the larger the data files that have to be streamed.  As always, the article notes that there are options--higher efficiencies at the source, convincing users to choose lower resolutions, and having the streaming services use clean energy sources.

While all of this may sound unduly negative, that is not my intention.  My intention is only to point out that the new technologies do not operate in a vacuum, and whether or not they achieve their full potential depends a lot on whether appropriate measures are taken to address human tendencies, comparative costs, convenience, and many other factors. 


Saturday, November 16, 2019

Electricity and Public Health:

A Vital Link

I haven't been blogging for the past month or so, in large part because I was on an extended trip.  The last stop on the trip was to attend a wedding in Half Moon Bay, California in early November.   I had been following the news about the wildfires in California and the deliberate power outages intended to prevent a power line from sparking more fires.  However, I had never thought to check what was happening where I was going, so I was startled when the groom spoke at the reception after the ceremony and mentioned that the power in Half Moon Bay had been cut off by Pacific Gas and Electric (PG&E) until just a couple of days before the wedding!

The bridal couple--and the entire wedding party--was fortunate that the power came back on in time for the festivities, but as the news made clear, the decision whether or not to shut down carried potential negative consequences either way.  I am not questioning the PG&E's decision to cut off power in some areas.  As the 2018 wildfires made clear, fires sparked by downed power lines can be deadly, and the decision to cut power this year may have saved lives and millions of dollars of property. 

But the decision to cut off power was not without some negative consequences of its own.  Other emergencies can occur (including wildfires started by lightning or human activities), and blackouts can make it harder to communicate in such circumstances--either to get information on the path of the fire or evacuation recommendations and routes, or to call for help.  And a loss of power can be deadly to people with health problems.  In addition, there are smaller problems, such as spoilage of food or medications during multi-day outages, that also carry potential health problems. 

The importance of electricity to the well-being of people today was further emphasized in another news item I read the same week on the long-term impacts of the Fukushima accident in Japan.  This article reports on the tentative results from a study that suggests that more people died in the aftermath of the accident, from causes not directly related to the accident or tsunami, than died in the accident itself.  (This is in addition to deaths attributed to the evacuation.)  I should note that this study has not yet been peer reviewed, so I can't attest to the exact numbers.  However, the points addressed correspond well with other articles I've read, so I think it is appropriate to explore the general issues. 

In this case, the concern is not just whether or not electric power is available, it is also how the electric power is being produced, and the cost of that power.  So for the Fukushima accident, the response was the shutdown of nuclear power plants and the replacement of that power by fossil fuel plants.  This created two health risks--first, there was an increase in air pollution, which has a detrimental effect, particularly on the elderly and people with certain illnesses.  Second, these substitute sources of electricity also cost a lot more, and apparently, this resulted in some people not being able to afford the power they needed and dying from exposure to cold.

Simply put, electricity is central to today's way of life.  It is how many homes are heated; it is how ventilators, dialysis machines, and other lifesaving devices operate; and it is central to how we get news that may be critical to our safety, such as evacuation instructions, and how we let people know where we are.  More and more, such factors need to be taken into account when decisions are made to turn off electric power plants.  Of course, in the longer term, changes may be needed in our infrastructure as well.  But burying power lines and making other such changes is a very expensive and long-term proposition.  Until then, we need to give more thought to the consequences of turning off electric power plants and plan for ways to protect vulnerable population groups and provide backups for critical communications.